Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects
نویسندگان
چکیده
[1] The simultaneous measurements of vertical velocity and cloud droplet size distributions in cumuli collected during the RACORO field campaign over the Atmospheric Radiation Measurement Program’s Southern Great Plains site near Lamont, Oklahoma, US, are analyzed to determine the effects of vertical velocity on droplet number concentration, relative dispersion (the ratio of standard deviation to mean radius), and their relationship. The results show that with increasing vertical velocity the droplet number concentration increases while the relative dispersion decreases. The data also exhibit a negative correlation between relative dispersion and droplet number concentration. These empirical relationships can be fitted well with power law functions. This observational study confirms the theoretical and numerical expectations of the effects of vertical velocity on cloud microphysics by analyzing the data of vertical velocity directly. The effects of vertical velocity on relative dispersion and its relationship with droplet number concentration are opposite to that associated with aerosol loading, posing a confounding challenge for separating aerosol indirect effects from dynamical effects. Citation: Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann (2012), Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects, Geophys. Res. Lett., 39, L21808, doi:10.1029/2012GL053599.
منابع مشابه
The importance of vertical velocity variability for estimates of the indirect aerosol effects
The activation of aerosols to form cloud droplets is dependent upon vertical velocities whose local variability is not typically resolved at the GCM grid scale. Consequently, it is necessary to represent the subgrid-scale variability of vertical velocity in the calculation of cloud droplet number concentration. This study uses the UK Chemistry and Aerosols community model (UKCA) within the Hadl...
متن کاملEffects of Film Forming Compounds on the growth of Giant CCN: Implications for cloud microphysics and the aerosol indirect effect
متن کامل
Microphysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds
This study investigates the effects of aerosols on tropical deep convective clouds (DCCs). A series of largescale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as cloud condensation nuclei (CCN). Polluted simulations contained more DCCs, wider storms, higher cloud tops, and more convective precipitation domainw...
متن کاملPredicting cloud droplet number concentration in Community Atmosphere Model (CAM)-Oslo
[1] A new framework for calculating cloud droplet number, including a continuity equation for cloud droplet number concentration, has been developed and implemented in an extended version of the National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2.0.1 (CAM-2.0.1). The new continuity equation for cloud droplet number concentration consists of a nucleation term and...
متن کاملImplementation of a two-moment bulk microphysics scheme to the WRF model to investigate aerosol-cloud interaction
[1] A two-moment bulk microphysical scheme has been implemented into the Weather Research and Forecasting (WRF) model to investigate the aerosol-cloud interaction. The microphysical scheme calculates the mass mixing ratios and number concentrations of aerosols and five types of hydrometeors and accounts for various cloud processes including warm and mixed phase microphysics. The representation ...
متن کامل